Papers
Topics
Authors
Recent
Search
2000 character limit reached

Low-rank State-action Value-function Approximation

Published 18 Apr 2021 in cs.AI | (2104.08805v1)

Abstract: Value functions are central to Dynamic Programming and Reinforcement Learning but their exact estimation suffers from the curse of dimensionality, challenging the development of practical value-function (VF) estimation algorithms. Several approaches have been proposed to overcome this issue, from non-parametric schemes that aggregate states or actions to parametric approximations of state and action VFs via, e.g., linear estimators or deep neural networks. Relevantly, several high-dimensional state problems can be well-approximated by an intrinsic low-rank structure. Motivated by this and leveraging results from low-rank optimization, this paper proposes different stochastic algorithms to estimate a low-rank factorization of the $Q(s, a)$ matrix. This is a non-parametric alternative to VF approximation that dramatically reduces the computational and sample complexities relative to classical $Q$-learning methods that estimate $Q(s,a)$ separately for each state-action pair.

Citations (8)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.