Papers
Topics
Authors
Recent
Search
2000 character limit reached

Deep Chaos Synchronization

Published 17 Apr 2021 in eess.SP and cs.AI | (2104.08436v1)

Abstract: In this study, we address the problem of chaotic synchronization over a noisy channel by introducing a novel Deep Chaos Synchronization (DCS) system using a Convolutional Neural Network (CNN). Conventional Deep Learning (DL) based communication strategies are extremely powerful but training on large data sets is usually a difficult and time-consuming procedure. To tackle this challenge, DCS does not require prior information or large data sets. In addition, we provide a novel Recurrent Neural Network (RNN)-based chaotic synchronization system for comparative analysis. The results show that the proposed DCS architecture is competitive with RNN-based synchronization in terms of robustness against noise, convergence, and training. Hence, with these features, the DCS scheme will open the door for a new class of modulator schemes and meet the robustness against noise, convergence, and training requirements of the Ultra Reliable Low Latency Communications (URLLC) and Industrial Internet of Things (IIoT).

Citations (8)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.