Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Analysis of a BERT Deep Learning Strategy on a Technology Assisted Review Task (2104.08340v1)

Published 16 Apr 2021 in cs.IR and cs.LG

Abstract: Document screening is a central task within Evidenced Based Medicine, which is a clinical discipline that supplements scientific proof to back medical decisions. Given the recent advances in DL (Deep Learning) methods applied to Information Retrieval tasks, I propose a DL document classification approach with BERT or PubMedBERT embeddings and a DL similarity search path using SBERT embeddings to reduce physicians' tasks of screening and classifying immense amounts of documents to answer clinical queries. I test and evaluate the retrieval effectiveness of my DL strategy on the 2017 and 2018 CLEF eHealth collections. I find that the proposed DL strategy works, I compare it to the recently successful BM25 plus RM3 model, and conclude that the suggested method accomplishes advanced retrieval performance in the initial ranking of the articles with the aforementioned datasets, for the CLEF eHealth Technologically Assisted Reviews in Empirical Medicine Task.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
Citations (6)