Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

TransferNet: An Effective and Transparent Framework for Multi-hop Question Answering over Relation Graph (2104.07302v2)

Published 15 Apr 2021 in cs.CL

Abstract: Multi-hop Question Answering (QA) is a challenging task because it requires precise reasoning with entity relations at every step towards the answer. The relations can be represented in terms of labels in knowledge graph (e.g., \textit{spouse}) or text in text corpus (e.g., \textit{they have been married for 26 years}). Existing models usually infer the answer by predicting the sequential relation path or aggregating the hidden graph features. The former is hard to optimize, and the latter lacks interpretability. In this paper, we propose TransferNet, an effective and transparent model for multi-hop QA, which supports both label and text relations in a unified framework. TransferNet jumps across entities at multiple steps. At each step, it attends to different parts of the question, computes activated scores for relations, and then transfer the previous entity scores along activated relations in a differentiable way. We carry out extensive experiments on three datasets and demonstrate that TransferNet surpasses the state-of-the-art models by a large margin. In particular, on MetaQA, it achieves 100\% accuracy in 2-hop and 3-hop questions. By qualitative analysis, we show that TransferNet has transparent and interpretable intermediate results.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Jiaxin Shi (53 papers)
  2. Shulin Cao (23 papers)
  3. Lei Hou (127 papers)
  4. Juanzi Li (144 papers)
  5. Hanwang Zhang (161 papers)
Citations (88)