Papers
Topics
Authors
Recent
2000 character limit reached

$q$-Supercongruences from Jackson's $_8φ_7$ summation and Watson's $_8φ_7$ transformation

Published 14 Apr 2021 in math.CO and math.NT | (2104.07025v4)

Abstract: $q$-Supercongruences modulo the fifth and sixth powers of a cyclotomic polynomial are very rare in the literature. In this paper, we establish some $q$-supercongruences modulo the fifth and sixth powers of a cyclotomic polynomial in terms of Jackson's $_8\phi_7$ summation, Watson's $_8\phi_7$ transformation, the creative microscoping method recently introduced by Guo and Zudilin, and the Chinese remainder theorem for coprime polynomials. More concretely, we give a $q$-analogue of a nice formula due to Long and Ramakrishna [Adv. Math. 290 (2016), 773--808] and two $q$-supercongruences involving double series.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.