Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

$q$-Supercongruences from transformation formulas (2109.12034v1)

Published 24 Sep 2021 in math.NT

Abstract: Let $\Phi_{n}(q)$ denote the $n$-th cyclotomic polynomial in $q$. Recently, Guo and Schlosser [Constr. Approx. 53 (2021), 155--200] put forward the following conjecture: for an odd integer $n>1$, \begin{align*} &\sum_{k=0}{n-1}[8k-1]\frac{(q{-1};q4)k6(q2;q2){2k}}{(q4;q4)k6(q{-1};q2){2k}}q{8k}\notag\ &\quad\equiv\begin{cases}0 \pmod{[n]\Phi_n(q)2}, &\text{if }n\equiv 1\pmod{4},\[5pt] 0 \pmod{[n]},&\text{if }n\equiv 3\pmod{4}. \end{cases} \end{align*} Applying the `creative microscoping' method and several summation and transformation formulas for basic hypergeometric series and the Chinese remainder theorem for coprime polynomials, we confirm the above conjecture, as well as another similar $q$-supercongruence conjectured by Guo and Schlosser.

Summary

We haven't generated a summary for this paper yet.