Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 424 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Noncatastrophic convolutional codes over a finite ring (2104.06754v1)

Published 14 Apr 2021 in cs.IT, math.IT, and math.RA

Abstract: Noncatastrophic encoders are an important class of polynomial generator matrices of convolutional codes. When these polynomials have coefficients in a finite field, these encoders have been characterized are being polynomial left prime matrices. In this paper we study the notion of noncatastrophicity in the context of convolutional codes when the polynomial matrices have entries in a finite ring. In particular, we need to introduce two different notion of primeness in order to fully characterize noncatastrophic encoders over the finite ring Z_{pr}. The second part of the paper is devoted to investigate the notion of free and column distance in this context when the convolutional code is a free finitely generated Z_{pr}-module. We introduce the notion of b-degree and provide new bounds on the free distances and column distance. We show that this class of convolutional codes is optimal with respect to the column distance and to the free distance if and only if its projection on Z_p is.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.