Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The dual of convolutional codes over $\mathbb{Z}_{p^r}$ (1601.05220v1)

Published 20 Jan 2016 in math.RA, cs.IT, and math.IT

Abstract: An important class of codes widely used in applications is the class of convolutional codes. Most of the literature of convolutional codes is devoted to con- volutional codes over finite fields. The extension of the concept of convolutional codes from finite fields to finite rings have attracted much attention in recent years due to fact that they are the most appropriate codes for phase modulation. However convolutional codes over finite rings are more involved and not fully understood. Many results and features that are well-known for convolutional codes over finite fields have not been fully investigated in the context of finite rings. In this paper we focus in one of these unexplored areas, namely, we investigate the dual codes of convolutional codes over finite rings. In particular we study the p-dimension of the dual code of a convolutional code over a finite ring. This contribution can be considered a generalization and an extension, to the rings case, of the work done by Forney and McEliece on the dimension of the dual code of a convolutional code over a finite field.

Citations (2)

Summary

We haven't generated a summary for this paper yet.