Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adversarial Sticker: A Stealthy Attack Method in the Physical World (2104.06728v2)

Published 14 Apr 2021 in cs.CV

Abstract: To assess the vulnerability of deep learning in the physical world, recent works introduce adversarial patches and apply them on different tasks. In this paper, we propose another kind of adversarial patch: the Meaningful Adversarial Sticker, a physically feasible and stealthy attack method by using real stickers existing in our life. Unlike the previous adversarial patches by designing perturbations, our method manipulates the sticker's pasting position and rotation angle on the objects to perform physical attacks. Because the position and rotation angle are less affected by the printing loss and color distortion, adversarial stickers can keep good attacking performance in the physical world. Besides, to make adversarial stickers more practical in real scenes, we conduct attacks in the black-box setting with the limited information rather than the white-box setting with all the details of threat models. To effectively solve for the sticker's parameters, we design the Region based Heuristic Differential Evolution Algorithm, which utilizes the new-found regional aggregation of effective solutions and the adaptive adjustment strategy of the evaluation criteria. Our method is comprehensively verified in the face recognition and then extended to the image retrieval and traffic sign recognition. Extensive experiments show the proposed method is effective and efficient in complex physical conditions and has a good generalization for different tasks.

Citations (99)

Summary

We haven't generated a summary for this paper yet.