Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Zero-Resource Multi-Dialectal Arabic Natural Language Understanding (2104.06591v2)

Published 14 Apr 2021 in cs.CL

Abstract: A reasonable amount of annotated data is required for fine-tuning pre-trained LLMs (PLM) on downstream tasks. However, obtaining labeled examples for different language varieties can be costly. In this paper, we investigate the zero-shot performance on Dialectal Arabic (DA) when fine-tuning a PLM on modern standard Arabic (MSA) data only -- identifying a significant performance drop when evaluating such models on DA. To remedy such performance drop, we propose self-training with unlabeled DA data and apply it in the context of named entity recognition (NER), part-of-speech (POS) tagging, and sarcasm detection (SRD) on several DA varieties. Our results demonstrate the effectiveness of self-training with unlabeled DA data: improving zero-shot MSA-to-DA transfer by as large as $\sim$10\% F$_1$ (NER), 2\% accuracy (POS tagging), and 4.5\% F$_1$ (SRD). We conduct an ablation experiment and show that the performance boost observed directly results from the unlabeled DA examples used for self-training. Our work opens up opportunities for leveraging the relatively abundant labeled MSA datasets to develop DA models for zero and low-resource dialects. We also report new state-of-the-art performance on all three tasks and open-source our fine-tuned models for the research community.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Muhammad Khalifa (24 papers)
  2. Hesham Hassan (1 paper)
  3. Aly Fahmy (3 papers)
Citations (6)

Summary

We haven't generated a summary for this paper yet.