Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Data-driven modeling of power networks (2104.06478v1)

Published 13 Apr 2021 in eess.SY and cs.SY

Abstract: We develop a non-intrusive data-driven modeling framework for power network dynamics using the Lift and Learn approach of \cite{QianWillcox2020}. A lifting map is applied to the snapshot data obtained from the original nonlinear swing equations describing the underlying power network such that the lifted-data corresponds to quadratic nonlinearity. The lifted data is then projected onto a lower dimensional basis and the reduced quadratic matrices are fit to this reduced lifted data using a least-squares measure. The effectiveness of the proposed approach is investigated by two power network models.

Summary

We haven't generated a summary for this paper yet.