Papers
Topics
Authors
Recent
Search
2000 character limit reached

Domain Adaptive Monocular Depth Estimation With Semantic Information

Published 12 Apr 2021 in cs.CV | (2104.05764v1)

Abstract: The advent of deep learning has brought an impressive advance to monocular depth estimation, e.g., supervised monocular depth estimation has been thoroughly investigated. However, the large amount of the RGB-to-depth dataset may not be always available since collecting accurate depth ground truth according to the RGB image is a time-consuming and expensive task. Although the network can be trained on an alternative dataset to overcome the dataset scale problem, the trained model is hard to generalize to the target domain due to the domain discrepancy. Adversarial domain alignment has demonstrated its efficacy to mitigate the domain shift on simple image classification tasks in previous works. However, traditional approaches hardly handle the conditional alignment as they solely consider the feature map of the network. In this paper, we propose an adversarial training model that leverages semantic information to narrow the domain gap. Based on the experiments conducted on the datasets for the monocular depth estimation task including KITTI and Cityscapes, the proposed compact model achieves state-of-the-art performance comparable to complex latest models and shows favorable results on boundaries and objects at far distances.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.