Papers
Topics
Authors
Recent
Search
2000 character limit reached

Learn to Adapt for Monocular Depth Estimation

Published 26 Mar 2022 in cs.CV and cs.AI | (2203.14005v1)

Abstract: Monocular depth estimation is one of the fundamental tasks in environmental perception and has achieved tremendous progress in virtue of deep learning. However, the performance of trained models tends to degrade or deteriorate when employed on other new datasets due to the gap between different datasets. Though some methods utilize domain adaptation technologies to jointly train different domains and narrow the gap between them, the trained models cannot generalize to new domains that are not involved in training. To boost the transferability of depth estimation models, we propose an adversarial depth estimation task and train the model in the pipeline of meta-learning. Our proposed adversarial task mitigates the issue of meta-overfitting, since the network is trained in an adversarial manner and aims to extract domain invariant representations. In addition, we propose a constraint to impose upon cross-task depth consistency to compel the depth estimation to be identical in different adversarial tasks, which improves the performance of our method and smoothens the training process. Experiments demonstrate that our method adapts well to new datasets after few training steps during the test procedure.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.