Papers
Topics
Authors
Recent
Search
2000 character limit reached

Fine-Tuning Transformers for Identifying Self-Reporting Potential Cases and Symptoms of COVID-19 in Tweets

Published 12 Apr 2021 in cs.CL and cs.SI | (2104.05501v1)

Abstract: We describe our straight-forward approach for Tasks 5 and 6 of 2021 Social Media Mining for Health Applications (SMM4H) shared tasks. Our system is based on fine-tuning Distill- BERT on each task, as well as first fine-tuning the model on the other task. We explore how much fine-tuning is necessary for accurately classifying tweets as containing self-reported COVID-19 symptoms (Task 5) or whether a tweet related to COVID-19 is self-reporting, non-personal reporting, or a literature/news mention of the virus (Task 6).

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.