Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Integrating Information Theory and Adversarial Learning for Cross-modal Retrieval (2104.04991v1)

Published 11 Apr 2021 in cs.CV

Abstract: Accurately matching visual and textual data in cross-modal retrieval has been widely studied in the multimedia community. To address these challenges posited by the heterogeneity gap and the semantic gap, we propose integrating Shannon information theory and adversarial learning. In terms of the heterogeneity gap, we integrate modality classification and information entropy maximization adversarially. For this purpose, a modality classifier (as a discriminator) is built to distinguish the text and image modalities according to their different statistical properties. This discriminator uses its output probabilities to compute Shannon information entropy, which measures the uncertainty of the modality classification it performs. Moreover, feature encoders (as a generator) project uni-modal features into a commonly shared space and attempt to fool the discriminator by maximizing its output information entropy. Thus, maximizing information entropy gradually reduces the distribution discrepancy of cross-modal features, thereby achieving a domain confusion state where the discriminator cannot classify two modalities confidently. To reduce the semantic gap, Kullback-Leibler (KL) divergence and bi-directional triplet loss are used to associate the intra- and inter-modality similarity between features in the shared space. Furthermore, a regularization term based on KL-divergence with temperature scaling is used to calibrate the biased label classifier caused by the data imbalance issue. Extensive experiments with four deep models on four benchmarks are conducted to demonstrate the effectiveness of the proposed approach.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Wei Chen (1288 papers)
  2. Yu Liu (784 papers)
  3. Erwin M. Bakker (6 papers)
  4. Michael S. Lew (11 papers)
Citations (24)