Normalized solutions to Schrödinger systems with linear and nonlinear couplings (2104.04158v1)
Abstract: In this paper, we study important Schr\"{o}dinger systems with linear and nonlinear couplings \begin{equation}\label{eq:diricichlet} \begin{cases} -\Delta u_1-\lambda_1 u_1=\mu_1 |u_1|{p_1-2}u_1+r_1\beta |u_1|{r_1-2}u_1|u_2|{r_2}+\kappa (x)u_2~\hbox{in}~\mathbb{R}N,\ -\Delta u_2-\lambda_2 u_2=\mu_2 |u_2|{p_2-2}u_2+r_2\beta |u_1|{r_1}|u_2|{r_2-2}u_2+\kappa (x)u_1~ \hbox{in}~\mathbb{R}N,\ u_1\in H1(\mathbb{R}N), u_2\in H1(\mathbb{R}N),\nonumber \end{cases} \end{equation} with the condition $$\int_{\mathbb{R}N} u_12=a_12, \int_{\mathbb{R}N} u_22=a_22,$$ where $N\geq 2$, $\mu_1,\mu_2,a_1,a_2>0$, $\beta\in\mathbb{R}$, $2<p_1,p_2<2*$, $2<r_1+r_2<2*$, $\kappa(x)\in L{\infty}(\mathbb{R}N)$ with fixed sign and $\lambda_1,\lambda_2$ are Lagrangian multipliers. We use Ekland variational principle to prove this system has a normalized radially symmetric solution for $L2-$subcritical case when $N\geq 2$, and use minimax method to prove this system has a normalized radially symmetric positive solution for $L2-$supercritical case when $N=3$, $p_1=p_2=4,\ r_1=r_2=2$.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.