Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimal CPU Scheduling in Data Centers via a Finite-Time Distributed Quantized Coordination Mechanism (2104.03126v1)

Published 7 Apr 2021 in cs.DC

Abstract: In this paper we analyze the problem of optimal task scheduling for data centers. Given the available resources and tasks, we propose a fast distributed iterative algorithm which operates over a large scale network of nodes and allows each of the interconnected nodes to reach agreement to an optimal solution in a finite number of time steps. More specifically, the algorithm (i) is guaranteed to converge to the exact optimal scheduling plan in a finite number of time steps and, (ii) once the goal of task scheduling is achieved, it exhibits distributed stopping capabilities (i.e., it allows the nodes to distributely determine whether they can terminate the operation of the algorithm). Furthermore, the proposed algorithm operates exclusively with quantized values (i.e., the information stored, processed and exchanged between neighboring agents is subject to deterministic uniform quantization) and relies on event-driven updates (e.g., to reduce energy consumption, communication bandwidth, network congestion, and/or processor usage). We also provide examples to illustrate the operation, performance, and potential advantages of the proposed algorithm. Finally, by using extensive empirical evaluations through simulations we show that the proposed algorithm exhibits state-of-the-art performance.

Citations (21)

Summary

We haven't generated a summary for this paper yet.