Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Anchor-Constrained Viterbi for Set-Supervised Action Segmentation (2104.02113v1)

Published 5 Apr 2021 in cs.CV

Abstract: This paper is about action segmentation under weak supervision in training, where the ground truth provides only a set of actions present, but neither their temporal ordering nor when they occur in a training video. We use a Hidden Markov Model (HMM) grounded on a multilayer perceptron (MLP) to label video frames, and thus generate a pseudo-ground truth for the subsequent pseudo-supervised training. In testing, a Monte Carlo sampling of action sets seen in training is used to generate candidate temporal sequences of actions, and select the maximum posterior sequence. Our key contribution is a new anchor-constrained Viterbi algorithm (ACV) for generating the pseudo-ground truth, where anchors are salient action parts estimated for each action from a given ground-truth set. Our evaluation on the tasks of action segmentation and alignment on the benchmark Breakfast, MPII Cooking2, Hollywood Extended datasets demonstrates our superior performance relative to that of prior work.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Jun Li (778 papers)
  2. Sinisa Todorovic (22 papers)
Citations (18)

Summary

We haven't generated a summary for this paper yet.