Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

DexDeepFM: Ensemble Diversity Enhanced Extreme Deep Factorization Machine Model (2104.01924v2)

Published 5 Apr 2021 in cs.LG

Abstract: Predicting user positive response (e.g., purchases and clicks) probability is a critical task in Web applications. To identify predictive features from raw data, the state-of-the-art extreme deep factorization machine model (xDeepFM) introduces a new interaction network to leverage feature interactions at the vector-wise level explicitly. However, since each hidden layer in the interaction network is a collection of feature maps, it can be viewed essentially as an ensemble of different feature maps. In this case, only using a single objective to minimize the prediction loss may lead to overfitting and generate correlated errors. In this paper, an ensemble diversity enhanced extreme deep factorization machine model (DexDeepFM) is proposed, which designs the ensemble diversity measure in each hidden layer and considers both ensemble diversity and prediction accuracy in the objective function. In addition, the attention mechanism is introduced to discriminate the importance of ensemble diversity measures with different feature interaction orders. Extensive experiments on three public real-world datasets are conducted to show the effectiveness of the proposed model.

Citations (7)

Summary

We haven't generated a summary for this paper yet.