Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards Prior-Free Approximately Truthful One-Shot Auction Learning via Differential Privacy (2104.00159v1)

Published 31 Mar 2021 in cs.GT and cs.LG

Abstract: Designing truthful, revenue maximizing auctions is a core problem of auction design. Multi-item settings have long been elusive. Recent work (arXiv:1706.03459) introduces effective deep learning techniques to find such auctions for the prior-dependent setting, in which distributions about bidder preferences are known. One remaining problem is to obtain priors in a way that excludes the possibility of manipulating the resulting auctions. Using techniques from differential privacy for the construction of approximately truthful mechanisms, we modify the RegretNet approach to be applicable to the prior-free setting. In this more general setting, no distributional information is assumed, but we trade this property for worse performance. We present preliminary empirical results and qualitative analysis for this work in progress.

Citations (1)

Summary

We haven't generated a summary for this paper yet.