Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

E-GraphSAGE: A Graph Neural Network based Intrusion Detection System for IoT (2103.16329v8)

Published 30 Mar 2021 in cs.NI, cs.AI, cs.CR, and cs.LG

Abstract: This paper presents a new Network Intrusion Detection System (NIDS) based on Graph Neural Networks (GNNs). GNNs are a relatively new sub-field of deep neural networks, which can leverage the inherent structure of graph-based data. Training and evaluation data for NIDSs are typically represented as flow records, which can naturally be represented in a graph format. In this paper, we propose E-GraphSAGE, a GNN approach that allows capturing both the edge features of a graph as well as the topological information for network intrusion detection in IoT networks. To the best of our knowledge, our proposal is the first successful, practical, and extensively evaluated approach of applying GNNs on the problem of network intrusion detection for IoT using flow-based data. Our extensive experimental evaluation on four recent NIDS benchmark datasets shows that our approach outperforms the state-of-the-art in terms of key classification metrics, which demonstrates the potential of GNNs in network intrusion detection, and provides motivation for further research.

Citations (155)

Summary

We haven't generated a summary for this paper yet.