Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Data-Driven Predictive Control for Linear Parameter-Varying Systems (2103.16160v2)

Published 30 Mar 2021 in eess.SY and cs.SY

Abstract: Based on the extension of the behavioral theory and the Fundamental Lemma for Linear Parameter-Varying (LPV) systems, this paper introduces a Data-driven Predictive Control (DPC) scheme capable to ensure reference tracking and satisfaction of Input-Output (IO) constraints for an unknown system under the conditions that (i) the system can be represented in an LPV form and (ii) an informative data-set containing measured IO and scheduling trajectories of the system is available. It is shown that if the data set satisfies a persistence of excitation condition, then a data-driven LPV predictor of future trajectories of the system can be constructed from the IO data set and online measured data. The approach represents the first step towards a DPC solution for nonlinear and time-varying systems due to the potential of the LPV framework to represent them. Two illustrative examples, including reference tracking control of a nonlinear system, are provided to demonstrate that the data-based LPV-DPC scheme, achieves similar performance as LPV model-based predictive control.

Citations (44)

Summary

We haven't generated a summary for this paper yet.