Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Nonlinear Data-Driven Control Part II: qLPV Predictive Control using Parameter Extrapolation (2306.17139v2)

Published 29 Jun 2023 in eess.SY, cs.SY, and math.DS

Abstract: We present a novel data-driven Model Predictive Control (MPC) algorithm for nonlinear systems. The method is based on recent extensions of behavioural theory and Willem's Fundamental Lemma for nonlinear systems by the means of adequate Input-Output (IO) quasi-Linear Parameter Varying (qLPV) embeddings. Thus, the MPC is formulated to ensure regulation and IO constraints satisfaction, based only on measured datasets of sufficient length (and under persistent excitation). Instead of requiring the availability of the scheduling trajectories (as in papers), we consider an estimate of the function that maps the qLPV realisation. Specifically, we use an extrapolation procedure in order to generate the future scheduling trajectories, at each sample, which is shown to be convergent and generated bounded errors. Accordingly, we discuss the issues of closed-loop IO stability and recursive feasibility certificates of the method. The algorithm is tested and discussed with the aid of a numerical application.

Summary

We haven't generated a summary for this paper yet.