Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Selective Survey: Most Efficient Models and Solvers for Integrative Multimodal Transport (2103.15555v1)

Published 16 Mar 2021 in cs.AI, cs.CY, and math.OC

Abstract: In the family of Intelligent Transportation Systems (ITS), Multimodal Transport Systems (MMTS) have placed themselves as a mainstream transportation mean of our time as a feasible integrative transportation process. The Global Economy progressed with the help of transportation. The volume of goods and distances covered have doubled in the last ten years, so there is a high demand of an optimized transportation, fast but with low costs, saving resources but also safe, with low or zero emissions. Thus, it is important to have an overview of existing research in this field, to know what was already done and what is to be studied next. The main objective is to explore a beneficent selection of the existing research, methods and information in the field of multimodal transportation research, to identify industry needs and gaps in research and provide context for future research. The selective survey covers multimodal transport design and optimization in terms of: cost, time, and network topology. The multimodal transport theoretical aspects, context and resources are also covering various aspects. The survey's selection includes nowadays best methods and solvers for Intelligent Transportation Systems (ITS). The gap between theory and real-world applications should be further solved in order to optimize the global multimodal transportation system.

Citations (2)

Summary

We haven't generated a summary for this paper yet.