Papers
Topics
Authors
Recent
2000 character limit reached

SelfGait: A Spatiotemporal Representation Learning Method for Self-supervised Gait Recognition

Published 27 Mar 2021 in cs.CV and cs.LG | (2103.14811v1)

Abstract: Gait recognition plays a vital role in human identification since gait is a unique biometric feature that can be perceived at a distance. Although existing gait recognition methods can learn gait features from gait sequences in different ways, the performance of gait recognition suffers from insufficient labeled data, especially in some practical scenarios associated with short gait sequences or various clothing styles. It is unpractical to label the numerous gait data. In this work, we propose a self-supervised gait recognition method, termed SelfGait, which takes advantage of the massive, diverse, unlabeled gait data as a pre-training process to improve the representation abilities of spatiotemporal backbones. Specifically, we employ the horizontal pyramid mapping (HPM) and micro-motion template builder (MTB) as our spatiotemporal backbones to capture the multi-scale spatiotemporal representations. Experiments on CASIA-B and OU-MVLP benchmark gait datasets demonstrate the effectiveness of the proposed SelfGait compared with four state-of-the-art gait recognition methods. The source code has been released at https://github.com/EchoItLiu/SelfGait.

Citations (13)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.