Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Automated Multiple-Choice Question Generation Using Natural Language Processing Techniques (2103.14757v1)

Published 26 Mar 2021 in cs.CL and cs.AI

Abstract: Automatic multiple-choice question generation (MCQG) is a useful yet challenging task in NLP. It is the task of automatic generation of correct and relevant questions from textual data. Despite its usefulness, manually creating sizeable, meaningful and relevant questions is a time-consuming and challenging task for teachers. In this paper, we present an NLP-based system for automatic MCQG for Computer-Based Testing Examination (CBTE).We used NLP technique to extract keywords that are important words in a given lesson material. To validate that the system is not perverse, five lesson materials were used to check the effectiveness and efficiency of the system. The manually extracted keywords by the teacher were compared to the auto-generated keywords and the result shows that the system was capable of extracting keywords from lesson materials in setting examinable questions. This outcome is presented in a user-friendly interface for easy accessibility.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
Citations (15)

Summary

We haven't generated a summary for this paper yet.