Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

LiGCN: Label-interpretable Graph Convolutional Networks for Multi-label Text Classification (2103.14620v2)

Published 26 Mar 2021 in cs.CL

Abstract: Multi-label text classification (MLTC) is an attractive and challenging task in NLP. Compared with single-label text classification, MLTC has a wider range of applications in practice. In this paper, we propose a label-interpretable graph convolutional network model to solve the MLTC problem by modeling tokens and labels as nodes in a heterogeneous graph. In this way, we are able to take into account multiple relationships including token-level relationships. Besides, the model allows better interpretability for predicted labels as the token-label edges are exposed. We evaluate our method on four real-world datasets and it achieves competitive scores against selected baseline methods. Specifically, this model achieves a gain of 0.14 on the F1 score in the small label set MLTC, and 0.07 in the large label set scenario.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Irene Li (47 papers)
  2. Aosong Feng (27 papers)
  3. Hao Wu (623 papers)
  4. Tianxiao Li (15 papers)
  5. Toyotaro Suzumura (60 papers)
  6. Ruihai Dong (25 papers)
Citations (5)