Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Predicting the future success of scientific publications through social network and semantic analysis (2103.14556v1)

Published 26 Mar 2021 in cs.DL

Abstract: Citations acknowledge the impact a scientific publication has on subsequent work. At the same time, deciding how and when to cite a paper, is also heavily influenced by social factors. In this work, we conduct an empirical analysis based on a dataset of 2010-2012 global publications in chemical engineering. We use social network analysis and text mining to measure publication attributes and understand which variables can better help predicting their future success. Controlling for intrinsic quality of a publication and for the number of authors in the byline, we are able to predict scholarly impact of a paper in terms of citations received six years after publication with almost 80 percent accuracy. Results suggest that, all other things being equal, it is better to co-publish with rotating co-authors and write the papers' abstract using more positive words, and a more complex, thus more informative, language. Publications that result from the collaboration of different social groups also attract more citations.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
Citations (19)

Summary

We haven't generated a summary for this paper yet.