Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Learning for Exotic Option Valuation (2103.12551v2)

Published 22 Mar 2021 in q-fin.CP and cs.LG

Abstract: A common approach to valuing exotic options involves choosing a model and then determining its parameters to fit the volatility surface as closely as possible. We refer to this as the model calibration approach (MCA). A disadvantage of MCA is that some information in the volatility surface is lost during the calibration process and the prices of exotic options will not in general be consistent with those of plain vanilla options. We consider an alternative approach where the structure of the user's preferred model is preserved but points on the volatility are features input to a neural network. We refer to this as the volatility feature approach (VFA) model. We conduct experiments showing that VFA can be expected to outperform MCA for the volatility surfaces encountered in practice. Once the upfront computational time has been invested in developing the neural network, the valuation of exotic options using VFA is very fast.

Citations (8)

Summary

We haven't generated a summary for this paper yet.