Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Discovering Emotion and Reasoning its Flip in Multi-Party Conversations using Masked Memory Network and Transformer (2103.12360v3)

Published 23 Mar 2021 in cs.CL

Abstract: Efficient discovery of a speaker's emotional states in a multi-party conversation is significant to design human-like conversational agents. During a conversation, the cognitive state of a speaker often alters due to certain past utterances, which may lead to a flip in their emotional state. Therefore, discovering the reasons (triggers) behind the speaker's emotion-flip during a conversation is essential to explain the emotion labels of individual utterances. In this paper, along with addressing the task of emotion recognition in conversations (ERC), we introduce a novel task - Emotion-Flip Reasoning (EFR), that aims to identify past utterances which have triggered one's emotional state to flip at a certain time. We propose a masked memory network to address the former and a Transformer-based network for the latter task. To this end, we consider MELD, a benchmark emotion recognition dataset in multi-party conversations for the task of ERC, and augment it with new ground-truth labels for EFR. An extensive comparison with five state-of-the-art models suggests improved performances of our models for both tasks. We further present anecdotal evidence and both qualitative and quantitative error analyses to support the superiority of our models compared to the baselines.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Shivani Kumar (13 papers)
  2. Anubhav Shrimal (4 papers)
  3. Md Shad Akhtar (54 papers)
  4. Tanmoy Chakraborty (225 papers)
Citations (32)

Summary

We haven't generated a summary for this paper yet.