Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adaptive Fractional-Order Sliding Mode Controller with Neural Network Compensator for an Ultrasonic Motor (2103.12327v1)

Published 23 Mar 2021 in eess.SY and cs.SY

Abstract: Ultrasonic motors (USMs) are commonly used in aerospace, robotics, and medical devices, where fast and precise motion is needed. Remarkably, sliding mode controller (SMC) is an effective controller to achieve precision motion control of the USMs. To improve the tracking accuracy and lower the chattering in the SMC, the fractional-order calculus is introduced in the design of an adaptive SMC in this paper, namely, adaptive fractional-order SMC (AFOSMC), in which the bound of the uncertainty existing in the USMs is estimated by a designed adaptive law. Additionally, a short memory principle is employed to overcome the difficulty of implementing the fractional-order calculus on a practical system in real-time. Here, the short memory principle may increase the tracking errors because some information is lost during its operation. Thus, a compensator according to the framework of BeLLMan's optimal control theory is proposed so that the residual errors caused by the short memory principle can be attenuated. Lastly, experiments on a USM are conducted, which comparative results verify the performance of the designed controller.

Summary

We haven't generated a summary for this paper yet.