Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

AngryBERT: Joint Learning Target and Emotion for Hate Speech Detection (2103.11800v1)

Published 14 Mar 2021 in cs.CL and cs.SI

Abstract: Automated hate speech detection in social media is a challenging task that has recently gained significant traction in the data mining and Natural Language Processing community. However, most of the existing methods adopt a supervised approach that depended heavily on the annotated hate speech datasets, which are imbalanced and often lack training samples for hateful content. This paper addresses the research gaps by proposing a novel multitask learning-based model, AngryBERT, which jointly learns hate speech detection with sentiment classification and target identification as secondary relevant tasks. We conduct extensive experiments to augment three commonly-used hate speech detection datasets. Our experiment results show that AngryBERT outperforms state-of-the-art single-task-learning and multitask learning baselines. We conduct ablation studies and case studies to empirically examine the strengths and characteristics of our AngryBERT model and show that the secondary tasks are able to improve hate speech detection.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Md Rabiul Awal (5 papers)
  2. Rui Cao (65 papers)
  3. Roy Ka-Wei Lee (68 papers)
  4. Sandra Mitrovic (3 papers)
Citations (38)