Papers
Topics
Authors
Recent
Search
2000 character limit reached

Absolute stability and absolute hyperbolicity in systems with discrete time-delays

Published 22 Mar 2021 in math.DS and nlin.AO | (2103.11670v1)

Abstract: An equilibrium of a delay differential equation (DDE) is absolutely stable, if it is locally asymptotically stable for all delays. We present criteria for absolute stability of DDEs with discrete time-delays. In the case of a single delay, the absolute stability is shown to be equivalent to asymptotic stability for sufficiently large delays. Similarly, for multiple delays, the absolute stability is equivalent to asymptotic stability for hierarchically large delays. Additionally, we give necessary and sufficient conditions for a linear DDE to be hyperbolic for all delays. The latter conditions are crucial for determining whether a system can have stabilizing or destabilizing bifurcations by varying time delays.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.