Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

ProgressiveSpinalNet architecture for FC layers (2103.11373v1)

Published 21 Mar 2021 in cs.LG and cs.CV

Abstract: In deeplearning models the FC (fully connected) layer has biggest important role for classification of the input based on the learned features from previous layers. The FC layers has highest numbers of parameters and fine-tuning these large numbers of parameters, consumes most of the computational resources, so in this paper it is aimed to reduce these large numbers of parameters significantly with improved performance. The motivation is inspired from SpinalNet and other biological architecture. The proposed architecture has a gradient highway between input to output layers and this solves the problem of diminishing gradient in deep networks. In this all the layers receives the input from previous layers as well as the CNN layer output and this way all layers contribute in decision making with last layer. This approach has improved classification performance over the SpinalNet architecture and has SOTA performance on many datasets such as Caltech101, KMNIST, QMNIST and EMNIST. The source code is available at https://github.com/praveenchopra/ProgressiveSpinalNet.

Citations (3)

Summary

We haven't generated a summary for this paper yet.