Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

MVGrasp: Real-Time Multi-View 3D Object Grasping in Highly Cluttered Environments (2103.10997v6)

Published 19 Mar 2021 in cs.RO

Abstract: Nowadays robots play an increasingly important role in our daily life. In human-centered environments, robots often encounter piles of objects, packed items, or isolated objects. Therefore, a robot must be able to grasp and manipulate different objects in various situations to help humans with daily tasks. In this paper, we propose a multi-view deep learning approach to handle robust object grasping in human-centric domains. In particular, our approach takes a point cloud of an arbitrary object as an input, and then, generates orthographic views of the given object. The obtained views are finally used to estimate pixel-wise grasp synthesis for each object. We train the model end-to-end using a small object grasp dataset and test it on both simulations and real-world data without any further fine-tuning. To evaluate the performance of the proposed approach, we performed extensive sets of experiments in three scenarios, including isolated objects, packed items, and pile of objects. Experimental results show that our approach performed very well in all simulation and real-robot scenarios, and is able to achieve reliable closed-loop grasping of novel objects across various scene configurations.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Hamidreza Kasaei (40 papers)
  2. Mohammadreza Kasaei (21 papers)
Citations (32)