PPT-SASMM: Scalable Analytical Shared Memory Model: Predicting the Performance of Multicore Caches from a Single-Threaded Execution Trace (2103.10635v1)
Abstract: Performance modeling of parallel applications on multicore processors remains a challenge in computational co-design due to multicore processors' complex design. Multicores include complex private and shared memory hierarchies. We present a Scalable Analytical Shared Memory Model (SASMM). SASMM can predict the performance of parallel applications running on a multicore. SASMM uses a probabilistic and computationally-efficient method to predict the reuse distance profiles of caches in multicores. SASMM relies on a stochastic, static basic block-level analysis of reuse profiles. The profiles are calculated from the memory traces of applications that run sequentially rather than using multi-threaded traces. The experiments show that our model can predict private L1 cache hit rates with 2.12% and shared L2 cache hit rates with about 1.50% error rate.
- Atanu Barai (8 papers)
- Gopinath Chennupati (20 papers)
- Nandakishore Santhi (17 papers)
- Abdel-Hameed Badawy (9 papers)
- Yehia Arafa (7 papers)
- Stephan Eidenbenz (57 papers)