Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generalizing Object-Centric Task-Axes Controllers using Keypoints (2103.10524v1)

Published 18 Mar 2021 in cs.RO and cs.LG

Abstract: To perform manipulation tasks in the real world, robots need to operate on objects with various shapes, sizes and without access to geometric models. It is often unfeasible to train monolithic neural network policies across such large variance in object properties. Towards this generalization challenge, we propose to learn modular task policies which compose object-centric task-axes controllers. These task-axes controllers are parameterized by properties associated with underlying objects in the scene. We infer these controller parameters directly from visual input using multi-view dense correspondence learning. Our overall approach provides a simple, modular and yet powerful framework for learning manipulation tasks. We empirically evaluate our approach on multiple different manipulation tasks and show its ability to generalize to large variance in object size, shape and geometry.

Citations (5)

Summary

We haven't generated a summary for this paper yet.