Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Characterizing the Communication Requirements of GNN Accelerators: A Model-Based Approach (2103.10515v1)

Published 18 Mar 2021 in cs.AR

Abstract: Relational data present in real world graph representations demands for tools capable to study it accurately. In this regard Graph Neural Network (GNN) is a powerful tool, wherein various models for it have also been developed over the past decade. Recently, there has been a significant push towards creating accelerators that speed up the inference and training process of GNNs. These accelerators, however, do not delve into the impact of their dataflows on the overall data movement and, hence, on the communication requirements. In this paper, we formulate analytical models that capture the amount of data movement in the most recent GNN accelerator frameworks. Specifically, the proposed models capture the dataflows and hardware setup of these accelerator designs and expose their scalability characteristics for a set of hardware, GNN model and input graph parameters. Additionally, the proposed approach provides means for the comparative analysis of the vastly different GNN accelerators.

Citations (9)

Summary

We haven't generated a summary for this paper yet.