Papers
Topics
Authors
Recent
2000 character limit reached

Augmenting Supervised Learning by Meta-learning Unsupervised Local Rules

Published 17 Mar 2021 in cs.LG and cs.AI | (2103.10252v1)

Abstract: The brain performs unsupervised learning and (perhaps) simultaneous supervised learning. This raises the question as to whether a hybrid of supervised and unsupervised methods will produce better learning. Inspired by the rich space of Hebbian learning rules, we set out to directly learn the unsupervised learning rule on local information that best augments a supervised signal. We present the Hebbian-augmented training algorithm (HAT) for combining gradient-based learning with an unsupervised rule on pre-synpatic activity, post-synaptic activities, and current weights. We test HAT's effect on a simple problem (Fashion-MNIST) and find consistently higher performance than supervised learning alone. This finding provides empirical evidence that unsupervised learning on synaptic activities provides a strong signal that can be used to augment gradient-based methods. We further find that the meta-learned update rule is a time-varying function; thus, it is difficult to pinpoint an interpretable Hebbian update rule that aids in training. We do find that the meta-learner eventually degenerates into a non-Hebbian rule that preserves important weights so as not to disturb the learner's convergence.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.