Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 81 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

A context-aware gate set tomography characterization of superconducting qubits (2103.09922v2)

Published 17 Mar 2021 in quant-ph

Abstract: The efficiency of Quantum Characterisation, Verification, and Validation (QCVV) protocols highly hinges on the agreement between the assumed noise model and the underlying error mechanisms. As a matter of fact, errors in Quantum Processing Units (QPUs) incorporate various aspects of context-dependability which are overlooked by the majority of the commonly used QCVV protocols. As QCVV protocols are indispensable when it comes to characterizing and evaluating quantum operations, there is a serious need for a detailed characterization taking into account such aspects. In this work, we address these shortcomings by designing a context-aware version of the gate set tomography (GST) protocol. Our experiment selection approach is based on a polynomial quantification of the accumulation of errors within the designed circuits. Using simulated QPUs, we show that this technique enables a characterization with an inaccuracy reaching $10{-5}$. Furthermore, we use our proposed protocol to experimentally infer context-dependent errors, namely crosstalk and memory effects, in a publicly accessible cloud-based superconducting qubits platform. Our results show that when the GST is upgraded to include such features of context-awareness, a large coherence in the errors is observed. These findings open up possibilities of drastically reducing the errors within the currently demonstrated QPUs.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube