Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Self-Supervised Learning of Audio Representations from Permutations with Differentiable Ranking (2103.09879v1)

Published 17 Mar 2021 in cs.SD, cs.AI, and eess.AS

Abstract: Self-supervised pre-training using so-called "pretext" tasks has recently shown impressive performance across a wide range of modalities. In this work, we advance self-supervised learning from permutations, by pre-training a model to reorder shuffled parts of the spectrogram of an audio signal, to improve downstream classification performance. We make two main contributions. First, we overcome the main challenges of integrating permutation inversions into an end-to-end training scheme, using recent advances in differentiable ranking. This was heretofore sidestepped by casting the reordering task as classification, fundamentally reducing the space of permutations that can be exploited. Our experiments validate that learning from all possible permutations improves the quality of the pre-trained representations over using a limited, fixed set. Second, we show that inverting permutations is a meaningful pretext task for learning audio representations in an unsupervised fashion. In particular, we improve instrument classification and pitch estimation of musical notes by reordering spectrogram patches in the time-frequency space.

Citations (24)

Summary

We haven't generated a summary for this paper yet.