Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

TLSAN: Time-aware Long- and Short-term Attention Network for Next-item Recommendation (2103.08971v1)

Published 16 Mar 2021 in cs.IR and cs.AI

Abstract: Recently, deep neural networks are widely applied in recommender systems for their effectiveness in capturing/modeling users' preferences. Especially, the attention mechanism in deep learning enables recommender systems to incorporate various features in an adaptive way. Specifically, as for the next item recommendation task, we have the following three observations: 1) users' sequential behavior records aggregate at time positions ("time-aggregation"), 2) users have personalized taste that is related to the "time-aggregation" phenomenon ("personalized time-aggregation"), and 3) users' short-term interests play an important role in the next item prediction/recommendation. In this paper, we propose a new Time-aware Long- and Short-term Attention Network (TLSAN) to address those observations mentioned above. Specifically, TLSAN consists of two main components. Firstly, TLSAN models "personalized time-aggregation" and learn user-specific temporal taste via trainable personalized time position embeddings with category-aware correlations in long-term behaviors. Secondly, long- and short-term feature-wise attention layers are proposed to effectively capture users' long- and short-term preferences for accurate recommendation. Especially, the attention mechanism enables TLSAN to utilize users' preferences in an adaptive way, and its usage in long- and short-term layers enhances TLSAN's ability of dealing with sparse interaction data. Extensive experiments are conducted on Amazon datasets from different fields (also with different size), and the results show that TLSAN outperforms state-of-the-art baselines in both capturing users' preferences and performing time-sensitive next-item recommendation.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Jianqing Zhang (15 papers)
  2. Dongjing Wang (1 paper)
  3. Dongjin Yu (5 papers)
Citations (27)

Summary

We haven't generated a summary for this paper yet.