Papers
Topics
Authors
Recent
2000 character limit reached

Goal-Driven Autonomous Exploration Through Deep Reinforcement Learning

Published 12 Mar 2021 in cs.RO | (2103.07119v2)

Abstract: In this paper, we present an autonomous navigation system for goal-driven exploration of unknown environments through deep reinforcement learning (DRL). Points of interest (POI) for possible navigation directions are obtained from the environment and an optimal waypoint is selected, based on the available data. Following the waypoints, the robot is guided towards the global goal and the local optimum problem of reactive navigation is mitigated. Then, a motion policy for local navigation is learned through a DRL framework in a simulation. We develop a navigation system where this learned policy is integrated into a motion planning stack as the local navigation layer to move the robot between waypoints towards a global goal. The fully autonomous navigation is performed without any prior knowledge while a map is recorded as the robot moves through the environment. Experiments show that the proposed method has an advantage over similar exploration methods, without reliance on a map or prior information in complex static as well as dynamic environments.

Citations (59)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.