Papers
Topics
Authors
Recent
Search
2000 character limit reached

Optimal local law and central limit theorem for $β$-ensembles

Published 11 Mar 2021 in math.PR, math-ph, and math.MP | (2103.06841v3)

Abstract: In the setting of generic $\beta$-ensembles, we use the loop equation hierarchy to prove a local law with optimal error up to a constant, valid on any scale including microscopic. This local law has the following consequences. (i) The optimal rigidity scale of the ordered particles is of order $(\log N)/N$ in the bulk of the spectrum. (ii) Fluctuations of the particles satisfy a central limit theorem with covariance corresponding to a logarithmically correlated field; in particular each particle in the bulk fluctuates on scale $\sqrt{\log N}/N$. (iii) The logarithm of the electric potential also satisfies a logarithmically correlated central limit theorem. Contrary to much progress on random matrix universality, these results do not proceed by comparison. Indeed, they are new for the Gaussian $\beta$-ensembles. By comparison techniques, (ii) and (iii) also hold for Wigner matrices.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.