2000 character limit reached
Universal Approximation of Residual Flows in Maximum Mean Discrepancy (2103.05793v2)
Published 10 Mar 2021 in cs.LG and stat.ML
Abstract: Normalizing flows are a class of flexible deep generative models that offer easy likelihood computation. Despite their empirical success, there is little theoretical understanding of their expressiveness. In this work, we study residual flows, a class of normalizing flows composed of Lipschitz residual blocks. We prove residual flows are universal approximators in maximum mean discrepancy. We provide upper bounds on the number of residual blocks to achieve approximation under different assumptions.