Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Automatic code generation from sketches of mobile applications in end-user development using Deep Learning (2103.05704v1)

Published 9 Mar 2021 in cs.HC, cs.AI, and cs.SE

Abstract: A common need for mobile application development by end-users or in computing education is to transform a sketch of a user interface into wireframe code using App Inventor, a popular block-based programming environment. As this task is challenging and time-consuming, we present the Sketch2aia approach that automates this process. Sketch2aia employs deep learning to detect the most frequent user interface components and their position on a hand-drawn sketch creating an intermediate representation of the user interface and then automatically generates the App Inventor code of the wireframe. The approach achieves an average user interface component classification accuracy of 87,72% and results of a preliminary user evaluation indicate that it generates wireframes that closely mirror the sketches in terms of visual similarity. The approach has been implemented as a web tool and can be used to support the end-user development of mobile applications effectively and efficiently as well as the teaching of user interface design in K-12.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
Citations (5)

Summary

We haven't generated a summary for this paper yet.