Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Zeros of Rankin-Selberg $L$-functions in families (2103.05634v2)

Published 9 Mar 2021 in math.NT

Abstract: Let $\mathfrak{F}n$ be the set of all cuspidal automorphic representations $\pi$ of $\mathrm{GL}_n$ with unitary central character over a number field $F$. We prove the first unconditional zero density estimate for the set $\mathcal{S}={L(s,\pi\times\pi')\colon\pi\in\mathfrak{F}_n}$ of Rankin-Selberg $L$-functions, where $\pi'\in\mathfrak{F}{n'}$ is fixed. We use this density estimate to establish (i) a hybrid-aspect subconvexity bound at $s=\frac{1}{2}$ for almost all $L(s,\pi\times\pi')\in \mathcal{S}$, (ii) a strong on-average form of effective multiplicity one for almost all $\pi\in\mathfrak{F}_n$, and (iii) a positive level of distribution for $L(s,\pi\times\tilde{\pi})$, in the sense of Bombieri-Vinogradov, for each $\pi\in\mathfrak{F}_n$.

Summary

We haven't generated a summary for this paper yet.