Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Universal Adversarial Perturbations and Image Spam Classifiers (2103.05469v1)

Published 7 Mar 2021 in cs.CR, cs.CV, and cs.LG

Abstract: As the name suggests, image spam is spam email that has been embedded in an image. Image spam was developed in an effort to evade text-based filters. Modern deep learning-based classifiers perform well in detecting typical image spam that is seen in the wild. In this chapter, we evaluate numerous adversarial techniques for the purpose of attacking deep learning-based image spam classifiers. Of the techniques tested, we find that universal perturbation performs best. Using universal adversarial perturbations, we propose and analyze a new transformation-based adversarial attack that enables us to create tailored "natural perturbations" in image spam. The resulting spam images benefit from both the presence of concentrated natural features and a universal adversarial perturbation. We show that the proposed technique outperforms existing adversarial attacks in terms of accuracy reduction, computation time per example, and perturbation distance. We apply our technique to create a dataset of adversarial spam images, which can serve as a challenge dataset for future research in image spam detection.

Citations (1)

Summary

We haven't generated a summary for this paper yet.