Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
86 tokens/sec
GPT-4o
11 tokens/sec
Gemini 2.5 Pro Pro
53 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

labelCloud: A Lightweight Domain-Independent Labeling Tool for 3D Object Detection in Point Clouds (2103.04970v1)

Published 5 Mar 2021 in cs.CV and cs.LG

Abstract: Within the past decade, the rise of applications based on AI in general and ML in specific has led to many significant contributions within different domains. The applications range from robotics over medical diagnoses up to autonomous driving. However, nearly all applications rely on trained data. In case this data consists of 3D images, it is of utmost importance that the labeling is as accurate as possible to ensure high-quality outcomes of the ML models. Labeling in the 3D space is mostly manual work performed by expert workers, where they draw 3D bounding boxes around target objects the ML model should later automatically identify, e.g., pedestrians for autonomous driving or cancer cells within radiography. While a small range of recent 3D labeling tools exist, they all share three major shortcomings: (i) they are specified for autonomous driving applications, (ii) they lack convenience and comfort functions, and (iii) they have high dependencies and little flexibility in data format. Therefore, we propose a novel labeling tool for 3D object detection in point clouds to address these shortcomings.

Citations (13)

Summary

We haven't generated a summary for this paper yet.