Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improving Zero-Shot Entity Retrieval through Effective Dense Representations (2103.04156v1)

Published 6 Mar 2021 in cs.CL, cs.IR, and cs.LG

Abstract: Entity Linking (EL) seeks to align entity mentions in text to entries in a knowledge-base and is usually comprised of two phases: candidate generation and candidate ranking. While most methods focus on the latter, it is the candidate generation phase that sets an upper bound to both time and accuracy performance of the overall EL system. This work's contribution is a significant improvement in candidate generation which thus raises the performance threshold for EL, by generating candidates that include the gold entity in the least candidate set (top-K). We propose a simple approach that efficiently embeds mention-entity pairs in dense space through a BERT-based bi-encoder. Specifically, we extend (Wu et al., 2020) by introducing a new pooling function and incorporating entity type side-information. We achieve a new state-of-the-art 84.28% accuracy on top-50 candidates on the Zeshel dataset, compared to the previous 82.06% on the top-64 of (Wu et al., 2020). We report the results from extensive experimentation using our proposed model on both seen and unseen entity datasets. Our results suggest that our method could be a useful complement to existing EL approaches.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Eleni Partalidou (2 papers)
  2. Despina Christou (3 papers)
  3. Grigorios Tsoumakas (50 papers)
Citations (7)

Summary

We haven't generated a summary for this paper yet.